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Overview: Life’s Operating Instructions 

 In 1953, James Watson and Francis Crick 

introduced an elegant double-helical model for the 

structure of deoxyribonucleic acid, or DNA 

 DNA, the substance of inheritance, is the most 

celebrated molecule of our time 

 Hereditary information is encoded in DNA and 

reproduced in all cells of the body (DNA 

replication) 
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Concept 13.1: DNA is the genetic material 

 Early in the 20th century, the identification of the 

molecules of inheritance loomed as a major 

challenge to biologists 
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The Search for the Genetic Material: Scientific 
Inquiry 

 When T. H. Morgan’s group showed that genes are 

located on chromosomes, the two components of 

chromosomes—DNA and protein—became 

candidates for the genetic material 

 The key factor in determining the genetic material 

was choosing appropriate experimental organisms 

 The role of DNA in heredity was worked out by 

studying bacteria and the viruses that infect them 
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Evidence That DNA Can Transform Bacteria 

 The discovery of the genetic role of DNA began with 

research by Frederick Griffith in 1928 

 Griffith worked with two strains of a bacterium, one 

pathogenic and one harmless 
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 When he mixed heat-killed remains of the 

pathogenic strain with living cells of the harmless 

strain, some living cells became pathogenic 

 He called this phenomenon transformation, now 

defined as a change in genotype and phenotype 

due to assimilation of foreign DNA 
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 Later work by Oswald Avery and others identified 

the transforming substance as DNA 

 Many biologists remained skeptical, mainly because 

little was known about DNA and they thought 

proteins were better candidates for the genetic 

material 
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Evidence That Viral DNA Can Program Cells 

 More evidence for DNA as the genetic material 

came from studies of viruses that infect bacteria 

 Such viruses, called bacteriophages (or phages), 

are widely used in molecular genetics research 

 A virus is DNA (or RNA) enclosed by a protective 

protein coat 

 Viruses must infect cells and take over the cells’ 
metabolic machinery in order to reproduce 
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 In 1952, Alfred Hershey and Martha Chase showed 

that DNA is the genetic material of a phage known 

as T2 

 To determine this, they designed an experiment 

showing that only the DNA of the T2 phage, and not 

the protein, enters an E. coli cell during infection 

 They concluded that the injected DNA of the phage 

provides the genetic information 
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Figure 13.5-1 
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Figure 13.5-2 
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Additional Evidence That DNA Is the Genetic Material 

 It was known that DNA is a polymer of nucleotides, 

each consisting of a nitrogenous base, a sugar, and 

a phosphate group 

 In 1950, Erwin Chargaff reported that DNA 

composition varies from one species to the next 

 This evidence of diversity made DNA a more 

credible candidate for the genetic material 
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Figure 13.6-1 

© 2016 Pearson Education, Inc. 

Phosphate 

3 end 

DNA 
nucleotide 

Sugar 
(deoxyribose) 

Nitrogenous base 



 Two findings became known as Chargaff’s rules 

 The base composition of DNA varies between 

species 

 In any species the percentages of A and T bases are 

equal and the percentages of G and C bases are 

equal 

 The basis for these rules was not understood until 

the discovery of the double helix 
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Building a Structural Model of DNA: Scientific 
Inquiry 

 James Watson and Francis Crick were first to 

determine the structure of DNA 

 Maurice Wilkins and Rosalind Franklin were using a 

technique called X-ray crystallography to study 

molecular structure 

 Franklin produced a picture of the DNA molecule 

using this technique 
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Figure 13.7 
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 Franklin’s X-ray crystallographic images of DNA 

enabled Watson to deduce that DNA was helical   

 The X-ray images also enabled Watson to deduce 

the width of the helix and the spacing of the 

nitrogenous bases 

 The pattern in the photo suggested that the DNA 

molecule was made up of two strands, forming a 

double helix 
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Figure 13.8-1 
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Figure 13.8-2 
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Figure 13.8-3 
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 Watson and Crick built models of a double helix to 

conform to the X-ray measurements and the 

chemistry of DNA 

 Franklin had concluded that there were two outer  

sugar-phosphate backbones, with the nitrogenous 

bases paired in the molecule’s interior 

 Watson built a model in which the backbones were 

antiparallel (their subunits run in opposite 

directions) 
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 At first, Watson and Crick thought the bases paired 

like with like (A with A, and so on), but such pairings 

did not result in a uniform width  

 Instead, pairing a purine with a pyrimidine resulted 

in a uniform width consistent with the X-ray data 

© 2016 Pearson Education, Inc. 



Figure 13.9 
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 Watson and Crick reasoned that the pairing was 

more specific, dictated by the base structures 

 They determined that adenine (A) paired only with 

thymine (T), and guanine (G) paired only with 

cytosine (C) 

 The Watson-Crick model explains Chargaff’s rules: 

in any organism the amount of A = the amount of T, 

and the amount of G = the amount of C 
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Figure 13.10 
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Concept 13.2: Many proteins work together in DNA 
replication and repair 

 The relationship between structure and function is 

manifest in the double helix 

 Watson and Crick noted that the specific base 

pairing suggested a possible copying mechanism 

for genetic material 
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Figure 13.11-s2 
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Figure 13.11-s3 
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The Basic Principle: Base Pairing to a Template 
Strand 

 Since the two strands of DNA are complementary, 

each strand acts as a template for building a new 

strand in replication 

 In DNA replication, the parent molecule unwinds, 

and two new daughter strands are built based on 

base-pairing rules 
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 Watson and Crick’s semiconservative model of 

replication predicts that when a double helix 

replicates, each daughter molecule will have one 

old strand (derived or “conserved” from the parent 
molecule) and one newly made strand 

 Competing models were the conservative model 

(the two parent strands rejoin) and the dispersive 

model (each strand is a mix of old and new) 
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 Experiments by Matthew Meselson and Franklin 

Stahl supported the semiconservative model 
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Figure 13.13-1 
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Figure 13.13-2 
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DNA Replication: A Closer Look 

 The copying of DNA is remarkable in its speed and 

accuracy 

 More than a dozen enzymes and other proteins 

participate in DNA replication 

 Much more is known about how this “replication 

machine” works in bacteria than in eukaryotes 

 Most of the process is similar between prokaryotes 

and eukaryotes 

© 2016 Pearson Education, Inc. 



Getting Started 

 Replication begins at sites called origins of 

replication, where the two DNA strands are 

separated, opening up a replication “bubble” 
 At each end of a bubble is a replication fork, a  

Y-shaped region where the parental strands of DNA 

are being unwound 
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 Helicases are enzymes that untwist the double 

helix at the replication forks 

 Single-strand binding proteins bind to and 

stabilize single-stranded DNA 

 Topoisomerase relieves the strain caused by tight 

twisting ahead of the replication fork by breaking, 

swiveling, and rejoining DNA strands 
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Figure 13.15-1a 
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 Multiple replication bubbles form and eventually 

fuse, speeding up the copying of DNA 
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Figure 13.15-2 
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(b) Origins of replication in a eukaryotic cell 
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 The enzyme, primase, starts an RNA chain with a 

single RNA nucleotide and adds RNA nucleotides 

one at a time using the parental DNA as a template 

 The primer is short (5–10 nucleotides long) 

 The new DNA strand will start from the 3 end of the 

RNA primer 
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 Enzymes called DNA polymerases catalyze the 

elongation of new DNA at a replication fork 

 Most DNA polymerases require a primer and a DNA 

template strand 

 The rate of elongation is about 500 nucleotides per 

second in bacteria and 50 per second in human 

cells 
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 Each nucleotide that is added to a growing DNA 

consists of a sugar attached to a base and to three 

phosphate groups 

 dATP is used to make DNA and is similar to the 

ATP of energy metabolism 

 The difference is in the sugars: dATP has 

deoxyribose, while ATP has ribose 

 As each monomer nucleotide joins the DNA strand, 

it loses two phosphate groups as a molecule of 

pyrophosphate 
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Antiparallel Elongation 

 Newly replicated DNA strands must be formed 

antiparallel to the template strand 

 DNA polymerases add nucleotides only to the free  

3 end of a growing strand; therefore, a new DNA 

strand can elongate only in the 5 to 3 direction 

© 2016 Pearson Education, Inc. 



 Along one template strand of DNA, the DNA 

polymerase synthesizes a leading strand 

continuously, moving toward the replication fork 

© 2016 Pearson Education, Inc. 



Figure 13.17 

© 2016 Pearson Education, Inc. 

Leading 
strand 

Overview 

Origin of replication Lagging 
strand 

Primer 

Lagging strand 
Leading 
strand Overall 

directions 
of replication 

Origin of replication 

3 
5 

5 
3 

Parental DNA 

3 

5 

RNA primer 

Sliding clamp 

DNA pol III 

3 
5 

5 
3 3 

5 

Continuous elongation 
in the 5 to 3 direction 



Figure 13.17-1 
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Figure 13.17-2 
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 To elongate the other new strand, the lagging 

strand, DNA polymerase must work in  

the direction away from the replication fork 

 The lagging strand is synthesized as a series of 

segments called Okazaki fragments 
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 After formation of Okazaki fragments, DNA 

polymerase I removes the RNA primers and 

replaces the nucleotides with DNA 

 The remaining gaps are joined together by DNA 

ligase 
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Figure 13.18-1 
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Figure 13.18-2-s1 
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Figure 13.18-2-s2 
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Figure 13.18-2-s3 
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Figure 13.18-3-s3 
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The DNA Replication Complex 

 The proteins that participate in DNA replication form 

a large complex, a “DNA replication machine” 

 The DNA replication machine may be stationary 

during the replication process 

 Recent studies support a model in which two DNA 

polymerase molecules “reel in” parental DNA and 
“extrude” newly made daughter DNA molecules 
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Proofreading and Repairing DNA 

 DNA polymerases proofread newly made DNA, 

replacing any incorrect nucleotides 

 In mismatch repair of DNA, other enzymes correct 

errors in base pairing 

 A hereditary defect in one such enzyme is 

associated with a form of colon cancer 

 This defect allows cancer-causing errors to 

accumulate in DNA faster than normal 
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 DNA can be damaged by exposure to harmful 

chemical or physical agents such as cigarette 

smoke and X-rays 

 It can also undergo spontaneous changes 

 In nucleotide excision repair, a nuclease cuts out 

and replaces damaged stretches of DNA 
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Figure 13.21-s2 
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Figure 13.21-s3 

© 2016 Pearson Education, Inc. 

5 

3 

Nuclease 

5 

3 

DNA 
polymerase 

5 

3 

DNA 
ligase 

5 

3 

3 

5 

3 

5 

3 

5 

3 

5 



Evolutionary Significance of Altered DNA 
Nucleotides 

 The error rate after proofreading repair is low but 

not zero 

 Sequence changes may become permanent and 

can be passed on to the next generation 

 These changes (mutations) are the source of the 

genetic variation upon which natural selection 

operates 
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Replicating the Ends of DNA Molecules 

 For linear DNA, the usual replication machinery 

cannot complete the 5 ends of daughter strands 

 Repeated rounds of replication produce shorter 

DNA molecules with uneven ends 

 Eukaryotic chromosomal DNA molecules have 

special nucleotide sequences at their ends called 

telomeres 
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Figure 13.22 
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 Telomeres typically consist of multiple repetitions of 

one short nucleotide sequence 

 Telomeres do not prevent the shortening of DNA 

molecules, but they do postpone it 

 It has been proposed that the shortening of 

telomeres is connected to aging 

© 2016 Pearson Education, Inc. 



 If chromosomes of germ cells became shorter in 

every cell cycle, essential genes would eventually 

be missing from the gametes they produce 

 An enzyme called telomerase catalyzes the 

lengthening of telomeres in germ cells 
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 Telomerase is not active in most human somatic 

cells 

 However, it does show inappropriate activity in 

some cancer cells 

 Telomerase is currently under study as a target for 

cancer therapies 
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Concept 13.3: A chromosome consists of a DNA 
molecule packed together with proteins 

 The bacterial chromosome is a double-stranded, 

circular DNA molecule associated with a small 

amount of protein 

 Eukaryotic chromosomes have linear DNA 

molecules associated with a large amount of protein 

 In a bacterium, the DNA is “supercoiled” and found 
in a region of the cell called the nucleoid 
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 Chromatin, a complex of DNA and protein, is found 

in the nucleus of eukaryotic cells 

 Chromosomes fit into the nucleus through an 

elaborate, multilevel system of packing 

 Chromatin undergoes striking changes in the 

degree of packing during the course of the cell cycle 
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 Proteins called histones are responsible for the first 

level of DNA packing in chromatin 

 Four types of histones are most common in 

chromatin: H2A, H2B, H3, and H4 

 A nucleosome consists of DNA wound twice 

around a protein core of eight histones, two of each 

of the main histone types 
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Figure 13.23-1 
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Figure 13.23-1a 
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Figure 13.23-2a 
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Figure 13.23-2c 
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 At interphase, most of the chromatin is compacted 

into a 30-nm fiber, which is folded further in some 

areas by looping 

 Even during interphase, centromeres and some 

other parts of chromosomes are highly condensed, 

similar to metaphase chromosomes 

 This condensed chromatin is called 

heterochromatin; the more dispersed, less 

compacted chromatin is called euchromatin 
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 Dense packing of the heterochromatin makes it 

largely inaccessible to the machinery responsible 

for transcribing genetic information 

 Chromosomes are dynamic in structure; a 

condensed region may be loosened or modified as 

needed for various cell processes 

 For example, histones can undergo chemical 

modifications that result in changes in chromatin 

organization 
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Concept 13.4: Understanding DNA structure and 
replication makes genetic engineering possible 

 Complementary base pairing of DNA is the basis for 

nucleic acid hybridization, the base pairing of one 

strand of a nucleic acid to another, complementary 

sequence 

 Nucleic acid hybridization forms the foundation of 

virtually every technique used in genetic 

engineering, the direct manipulation of genes for 

practical purposes 
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DNA Cloning: Making Multiple Copies of a Gene or 
Other DNA Segment 

 To work directly with specific genes, scientists 

prepare well-defined segments of DNA in identical 

copies, a process called DNA cloning 

 Most methods for cloning pieces of DNA in the 

laboratory share general features 
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 Many bacteria contain plasmids, small circular 

DNA molecules that replicate separately from the 

bacterial chromosome 

 To clone pieces of DNA, researchers first obtain a 

plasmid and insert DNA from another source 

(“foreign DNA”) into it 
 The resulting plasmid is called recombinant DNA 
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 The production of multiple copies of a single gene is 

called gene cloning  

 The plasmid that carries the cloned DNA is called a 

cloning vector 

 Gene cloning is used to make many copies of a 

gene and to produce a protein product 

 The ability to amplify many copies of a gene is 

crucial for applications involving a single gene 
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Using Restriction Enzymes to Make Recombinant 
DNA 

 Bacterial restriction enzymes cut DNA molecules 

at specific DNA sequences called restriction sites 

 A restriction enzyme usually makes many cuts, 

yielding restriction fragments 
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 The most useful restriction enzymes cleave the 

DNA in a staggered manner to produce sticky 

ends 

 Sticky ends can bond with complementary sticky 

ends of other fragments 

 DNA ligase can close the sugar-phosphate 

backbones of DNA strands 
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 To see the fragments produced by cutting DNA 

molecules with restriction enzymes, researchers 

use gel electrophoresis 

 This technique separates a mixture of nucleic acid 

fragments based on length 
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Amplifying DNA in Vitro: The Polymerase Chain 
Reaction (PCR) and Its Use in Cloning 

 The polymerase chain reaction (PCR) can 

produce many copies of a specific target segment of 

DNA 

 A three-step cycle brings about a chain reaction that 

produces an exponentially growing population of 

identical DNA molecules 

 The key to PCR is an unusual, heat-stable DNA 

polymerase called Taq polymerase. 
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 PCR amplification alone cannot substitute for gene 

cloning in cells 

 Instead, PCR is used to provide the specific DNA 

fragment to be cloned 

 PCR primers are synthesized to include a restriction 

site that matches the site in the cloning vector 

 The fragment and vector are cut and ligated 

together 
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DNA Sequencing 

 Once a gene is cloned, complementary base pairing 

can be exploited to determine the gene’s complete 

nucleotide sequence 

 This process is called DNA sequencing 
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 “Next-generation” sequencing techniques, 
developed in the last 15 years, are rapid and 

inexpensive 

 They sequence by synthesizing the complementary 

strand of a single, immobilized template strand 

 A chemical technique enables electronic monitors to 

identify which nucleotide is being added at each 

step 
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 Next-generation methods are being complemented 

or replaced by third-generation methods 

 These newer techniques are faster and less 

expensive 

 Several groups are working on “nanopore” 
methods, which involve moving a single DNA strand 

through a tiny pore in a membrane 

 Nucleotides are identified by slight differences in the 

amount of time that they interrupt an electrical 

current across the pore 
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Editing Genes and Genomes 

 Over the past five years, biologists have developed 

a powerful new technique called the CRISPR-Cas9 

system 

 Cas9 is a nuclease that cuts double-stranded DNA 

molecules as directed by a guide RNA that is 

complementary to the target gene 

 Researchers have used this system to “knock out” 
(disable) a given gene in order to determine its 

function 
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 Researchers have also modified the CRISPR-Cas9 

system to repair a gene that has a mutation 

 In 2014 a group of researchers reported using this 

system to successfully correct a mutated gene in 

mice 

 CRISPR technology is sparking widespread 

excitement among researchers and physicians 
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